Кипячение удалило из жесткой воды более восьмидесяти процентов микропластика

29 Feb 2024

Китайские ученые выяснили, что кипячением можно удалить более восьмидесяти процентов микропластика из воды. Этот способ лучше подходит для жесткой воды: при кипячении частицы пластика связываются с карбонатом кальция и выпадают в осадок. Результаты исследования опубликованы в журнале Environmental Science & Technology Letters.

Микропластиком называют пластиковые фрагменты и волокна длиной менее пяти миллиметров, а нанопластиком — волокна длиной менее одного микрометра. Такие частицы окружает нас повсюду: их уже находили на дне океана и в облаках, в человеческой крови и даже плаценте. О влиянии микропластика на здоровье у ученых пока нет единого мнения. Пока одни исследования не находят достаточных доказательств его вреда, другие авторы утверждают, что микропластик повреждает клеточные мембраны и может вызывать апоптоз (клеточную смерть). Кроме того, известно, что микропластиковые частицы могут адсорбировать на себя другие вредные вещества и даже усиливать их токсическое действие.

Ученые постоянно ищут дешевые и доступные способы очистки воды от пластикового загрязнения. Чжань Цзюнь Ли (Zhanjun Li) из Медицинского Университета Гуанчжоу и Эдди Цзэн (Eddy Y. Zeng) из Университета Дзинаня вместе с коллегами выяснили, что избавиться от части такого загрязнения можно, просто прокипятив воду.

Кипячение снижает жесткость воды, то есть содержание в ней солей кальция, магния и других металлов. При нагревании растворимый гидрокарбонат кальция Сa(HCO3)2 переходит в нерастворимый карбонат СaCO3. Исследователи предположили, что частицы пластика могут связываться с солями кальция и выпадать в осадок вместе с ними.

Авторы приготовили образцы воды разной жесткости (с содержанием СaCO3 от 60 до 300 миллиграммов на литр), которые загрязнили частицами трех видов полистирола, полиэтилена и полипропилена размером от 0,1 до 150 микрометров. Воду кипятили при температуре 100 градусов Цельсия, а контрольные образцы, которые не доводили до кипения, но нагревали до температуры от 25 до 90 градусов Цельсия.

Нагревание воды позволяло связывать часть пластика, но этот эффект был достаточно слабым. А вот кипячение обеспечивало резкий скачок связывания микропластика — его концентрация в финальных пробах снижалась на 84 процента — с 30 до 4,8 частицы на каждый микролитр жидкости. Быстрее всего связывались мелкие частицы (размером 0,1 микрометра), а среди видов пластика охотнее всего связывался с солями полистирол, допированный карбоксильными группами. Ли и Цзэн предположили, что отрицательный заряд на поверхности таких частиц облегчает связывание с ионами кальция. Тем не менее разница между разными видами микропластика была не столь существенна. Гораздо заметнее на финальный результат влияла жесткость: из проб самой жесткой воды удалось извлечь втрое больше микропластика. А из самой мягкой воды (с концентрацией СaCO3 менее 60 миллиграммов на литр) кипячение позволило удалить 25 процентов изначального микропластика.

Авторы предположили, что наночастицы начинают связываться с CаСO3 уже в самом начале его образования, выступая центрами нуклеации для растущих кристаллов. В результате дзета-потенциал снижается, частицы становятся более подвижными и могут вступать в реакции с другими растущими частицами. Это подтверждается образованием частиц, которые содержали в себе несколько разных видов пластика.

Авторы отмечают, что жесткость воды и состав микропластикового загрязнения заметно отличаются для разных регионов, поэтому и эффективность очистки будет меняться. Тем не менее кипячение воды для питья — распространенная практика для многих людей, в том числе тех, кто не привык пользоваться фильтрами для воды или не может позволить себе их покупку. Исследование показало, что кипячение параллельно позволяет избавляться от части микропластикового зягрязнения, и это, безусловно, хорошая новость.

В прошлом году другая группа китайских экологов выяснила, что микропластик в почве может защищать побеги кукурузы от токсинов, в частности фенатрена. Однако эффект сильно зависел от размера: частицы диаметром 550 микрометров адсорбировали на себя фенатрен, но более мелкие частицы диаметром 250 микрометров, напротив, усиливали его токсическое воздействие и вдобавок вредили почвенному микробиому. А проверить свои знания о микропластике можно, пройдя наш тест.

Источник: N+1

Фото: N + 1; Zeng et al. / Environmental Science & Technology Letters, 2024

Dec 20
19 декабря прошла научная конференция «2023: Предварительные итоги»

19 декабря 2023 года Международный институт развития научного сотрудничества «МИ ...

Nov 15
III Международный форум «СМИ и цифровые технологии перед вызовами информационного и исторического фальсификата»

14 и 15 ноября в отеле «Националь» в Москве проходит III Международный форум «СМ ...

Oct 30
МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР: «БЛИЖНИЙ ВОСТОК В УСЛОВИЯХ МЕНЯЮЩЕГОСЯ МИРОПОРЯДКА»

30 октября 2023 Центр научно-аналитической информации Института востоковедения Р ...

Oct 11
IX Международная встреча интеллектуалов на тему «Евразийские Балканы в большой мировой игре»

10-11 октября в Белграде прошла IX Международная встреча интеллектуалов на тему ...

Наши партнеры

Президиум

Profesor Name
Пономарева Елена Георгиевна

Президент Международного Института Развития Научного Сотрудничества
Российский политолог, историк, публицист. Доктор политических наук, профессор МГИМО

Profesor Name
Ариф Асалыоглу

Генеральный директор Международного Института Развития Научного Сотрудничества

Profesor Name
Мейер Михаил Серафимович

Научный руководитель Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор

Profesor Name
Наумкин Виталий Вячеславович

Председатель Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук, профессор, член-корреспондент РАН. Директор Института востоковедения РАН. Член научного совета Российского совета по международным делам.

Profesor Name
Мирзеханов Велихан Салманханович

Заместитель Председателя Попечительского совета Международного Института Развития Научного Сотрудничества
Доктор исторических наук. Профессор кафедры стран постсоветского зарубежья РГГУ, профессор факультета глобальных процессов МГУ им. М.В. Ломоносова.

Встреча российских и турецких молодых интеллектуалов